Final exam Linear Algebra II

Thursday 04/04/2024, 15:00-17:00, Martini Plaza

1
$$(9 = 3 + 2 + 4 \text{ pts})$$

Subspaces and bases

Let \mathcal{V} be the \mathbb{R} -vector space of all functions $f: \mathbb{N} \to \mathbb{R}^n$, where $\mathbb{N} = \{1, 2, ...\}$. Here the addition of functions $f, g \in \mathcal{V}$ is defined as (f+g)(k) = f(k) + g(k) for all $k \in \mathbb{N}$, while scalar multiplication is defined as (af)(k) = af(k) for $a \in \mathbb{R}$ and $f \in \mathcal{V}$. In this exercise we will consider the set

$$\mathcal{S} := \{ f \in \mathcal{V} \mid f(k+1) = T(f(k)) \ \forall k \in \mathbb{N} \},\$$

where $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear operator.

- (a) Prove that S is a subspace of V.
- (b) Let $x \in \mathbb{R}^n$. Show that f, defined by $f(k) = T^{k-1}(x)$ for all $k \in \mathbb{N}$, is in S.
- (c) Find a basis for S. Motivate your answer.

2 (9 = 2 + 2 + 2 + 3 pts)

Inner product, injective, bijective, adjoint

Let V and W be two inner product spaces over \mathbb{C} . The inner product on V we denote as $\langle \cdot, \cdot \rangle_V$ and the one on W as $\langle \cdot, \cdot \rangle_W$. We call a \mathbb{C} -linear transformation $T: V \to W$ unitary if $\langle v_1, v_2 \rangle_V = \langle T(v_1), T(v_2) \rangle_W$ for all $v_1, v_2 \in V$.

- (a) Taking $V = \mathbb{C}^2$ and $W = \mathbb{C}^3$ (both with the standard Hermitian inner product), show that $T: V \to W$ given by $\begin{pmatrix} z \\ w \end{pmatrix} \mapsto \begin{pmatrix} z \\ w \\ 0 \end{pmatrix}$ is unitary but not surjective.
- (b) Prove that for every V, W as above, every unitary $T: V \to W$ is injective.
- (c) Now suppose that moreover $\dim V = \dim W < \infty$ and that $T: V \to W$ is unitary. Prove that T is bijective.
- (d) In the situation of (c), show that T^{-1} is the adjoint of T.

Consider a \mathbb{C} -inner product space V of dimension 2 over \mathbb{C} , and two independent vectors $v_1, v_2 \in V$. The goal of this exercise is to describe all possible inner products on V.

- (a) Suppose that $\langle \cdot, \cdot \rangle$ is an inner product on V. Put $a := \langle v_1, v_1 \rangle$ and $b := \langle v_2, v_2 \rangle$ and $c := \langle v_1, v_2 \rangle$. For an arbitrary pair $v = \alpha v_1 + \beta v_2$, $w = \gamma v_1 + \delta v_2$ in V (with $\alpha, \beta, \gamma, \delta \in \mathbb{C}$), write $\langle v, w \rangle$ in terms of $a, b, c, \alpha, \beta, \gamma, \delta$.
- (b) Now take $a, b, c \in \mathbb{C}$. Show that if

$$\begin{cases} (v_1, v_1) \mapsto a, \\ (v_1, v_2) \mapsto c, \\ (v_2, v_2) \mapsto b \end{cases}$$

extends to an inner product $V \times V \longrightarrow \mathbb{C}$, then $a, b \in \mathbb{R}_{>0}$ and $|\text{Re}(c)| < \sqrt{ab}$.

(c) Vice versa, prove that if a > 0 and b > 0 and $c \in \mathbb{C}$ satisfy $|\text{Re}(c)| < \sqrt{ab}$, then

$$\begin{cases} (v_1, v_1) \mapsto a, \\ (v_1, v_2) \mapsto c, \\ (v_2, v_2) \mapsto b \end{cases}$$

extends to an inner product $V \times V \longrightarrow \mathbb{C}$.

4
$$(9 = 2 + 3 + 4 \text{ pts})$$

Positive semidefinite matrices

Let \mathcal{X} be a nonempty set. The function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called *positive semidefinite* if its associated $n \times n$ Gram matrix $(k(x_i, x_j))$ is symmetric and positive semidefinite for all $x_1, x_2, \ldots, x_n \in \mathcal{X}$ and all $n \in \mathbb{N}$.

- (a) Suppose that $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is positive semidefinite and consider $x_1, x_2, \ldots, x_n \in \mathcal{X}$. Show that all eigenvalues of the Gram matrix $(k(x_i, x_j))$ are nonnegative.
- (b) Let \mathcal{V} be an inner product space over \mathbb{R} with inner product $\langle \cdot, \cdot \rangle$. Consider a function $f: \mathcal{X} \to \mathcal{V}$. Define $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ by $k(x,y) := \langle f(x), f(y) \rangle$. Prove that k is positive semidefinite.
- (c) Without computing eigenvalues or determinants, show that the matrix

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 4 & 9 & 16 \\ 1 & 9 & 25 & 49 \\ 1 & 16 & 49 & 100 \end{bmatrix}$$

is positive semidefinite. Hint: use $f: \mathbb{R} \to \mathbb{R}^3$ given by $f(x) = \begin{pmatrix} 1 \\ \sqrt{2}x \\ x^2 \end{pmatrix}$ and (b) and $(x_1, x_2, x_3, x_4) = (0, 1, 2, 3)$.